Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local connectedness of boundaries for relatively hyperbolic groups (2204.02463v2)

Published 5 Apr 2022 in math.GR and math.GT

Abstract: Let $(\Gamma,\mathbb{P})$ be a relatively hyperbolic group pair that is relatively one ended. Then the Bowditch boundary of $(\Gamma,\mathbb{P})$ is locally connected. Bowditch previously established this conclusion under the additional assumption that all peripheral subgroups are finitely presented, either one or two ended, and contain no infinite torsion subgroups. We remove these restrictions; we make no restriction on the cardinality of $\Gamma$ and no restriction on the peripheral subgroups $P \in \mathbb{P}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. F.D. Ancel and L. Siebenmann. The construction of homogeneous homology manifolds. Abstracts Amer. Math. Soc., 6, 1985. Abstract number 816-57-72.
  2. B.H. Bowditch and J. Crisp. Archimedean actions on median pretrees. Math. Proc. Cambridge Philos. Soc., 130(3):383–400, 2001.
  3. M. Bestvina and M. Feighn. Stable actions of groups on real trees. Invent. Math., 121(2):287–321, 1995.
  4. M. Bonk and B. Kleiner. Quasi-hyperbolic planes in hyperbolic groups. Proc. Amer. Math. Soc., 133(9):2491–2494, 2005.
  5. M. Bestvina and G. Mess. The boundary of negatively curved groups. J. Amer. Math. Soc., 4(3):469–481, 1991.
  6. B.H. Bowditch. Cut points and canonical splittings of hyperbolic groups. Acta Math., 180(2):145–186, 1998.
  7. B.H. Bowditch. Boundaries of geometrically finite groups. Math. Z., 230(3):509–527, 1999.
  8. B.H. Bowditch. Connectedness properties of limit sets. Trans. Amer. Math. Soc., 351(9):3673–3686, 1999.
  9. B.H. Bowditch. Convergence groups and configuration spaces. In J. Cossey, C.F. Miller, W.D. Neumann, and M. Shapiro, editors, Geometric group theory down under (Canberra, 1996), pages 23–54. de Gruyter, Berlin, 1999.
  10. B.H. Bowditch. Treelike structures arising from continua and convergence groups. Mem. Amer. Math. Soc., 139(662):1–86, 1999.
  11. B.H. Bowditch. Peripheral splittings of groups. Trans. Amer. Math. Soc., 353(10):4057–4082, 2001.
  12. B.H. Bowditch. Relatively hyperbolic groups. Internat. J. Algebra Comput., 22(3):1250016, 66, 2012.
  13. H. Bigdely and D.T. Wise. Quasiconvexity and relatively hyperbolic groups that split. Michigan Math. J., 62(2):387–406, 2013.
  14. C.E. Capel. Inverse limit spaces. Duke Math. J., 21:233–245, 1954.
  15. F. Dahmani. Combination of convergence groups. Geom. Topol., 7:933–963, 2003.
  16. C. Dru\cbtu and M. Sapir. Tree-graded spaces and asymptotic cones of groups. Topology, 44(5):959–1058, 2005. With an appendix by D. Osin and M. Sapir.
  17. S. Dowdall and S.J. Taylor. The co-surface graph and the geometry of hyperbolic free group extensions. J. Topol., 10(2):447–482, 2017.
  18. R. Engelking. General topology, volume 6 of Sigma Series in Pure Mathematics. Heldermann Verlag, Berlin, 2nd edition, 1989.
  19. V. Gerasimov. Expansive convergence groups are relatively hyperbolic. Geom. Funct. Anal., 19(1):137–169, 2009.
  20. V. Gerasimov. Floyd maps for relatively hyperbolic groups. Geom. Funct. Anal., 22(5):1361–1399, 2012.
  21. V. Guirardel and G. Levitt. Deformation spaces of trees. Groups Geom. Dyn., 1(2):135–181, 2007.
  22. V. Guirardel and G. Levitt. Splittings and automorphisms of relatively hyperbolic groups. Groups Geom. Dyn., 9(2):599–663, 2015.
  23. V. Guirardel and G. Levitt. JSJ decompositions of groups, volume 395 of Astérisque. Société Mathématique de France, Paris, 2017.
  24. D. Groves and J.F. Manning. Dehn filling in relatively hyperbolic groups. Israel J. Math., 168:317–429, 2008.
  25. V. Gerasimov and L. Potyagailo. Non–finitely generated relatively hyperbolic groups and Floyd quasiconvexity. Groups Geom. Dyn., 9(2):369–434, 2015.
  26. V. Gerasimov and L. Potyagailo. Similar relatively hyperbolic actions of a group. Int. Math. Res. Not. IMRN, 2016(7):2068–2103, 2016.
  27. R. Geoghegan and E. Swenson. On semistability of CAT⁡(0)CAT0\operatorname{CAT}(0)roman_CAT ( 0 ) groups. Groups Geom. Dyn., 13(2):695–705, 2019.
  28. M. Haulmark. Local cut points and splittings of relatively hyperbolic groups. Algebr. Geom. Topol., 19(6):2795–2836, 2019.
  29. M. Haulmark and G.C. Hruska. On canonical splittings of relatively hyperbolic groups. Israel J. Math., 258(1):249–286, 2023.
  30. M. Haulmark and M. Mihalik. Relatively hyperbolic groups with semistable peripheral subgroups. Internat. J. Algebra Comput., 32(4):753–783, 2022.
  31. G.C. Hruska and K. Ruane. Hyperbolic groups and local connectivity. To appear in R. Geoghegan, C. Guilbault, and K. Ruane, editors, Topology at infinity of discrete groups, a volume of Contemporary Mathematics. Amer. Math. Soc. arXiv:2308.14964.
  32. G.C. Hruska. Relative hyperbolicity and relative quasiconvexity for countable groups. Algebr. Geom. Topol., 10(3):1807–1856, 2010.
  33. Planar boundaries and parabolic subgroups. Math. Res. Lett., 30(4):1081–1112, 2023.
  34. W. Jakobsche. Homogeneous cohomology manifolds which are inverse limits. Fund. Math., 137(2):81–95, 1991.
  35. A.S. Kechris. Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
  36. M. Kapovich and B. Kleiner. Hyperbolic groups with low-dimensional boundary. Ann. Sci. École Norm. Sup. (4), 33(5):647–669, 2000.
  37. I. Kapovich and K. Rafi. On hyperbolicity of free splitting and free factor complexes. Groups Geom. Dyn., 8(2):391–414, 2014.
  38. G. Levitt. Non-nesting actions on real trees. Bull. London Math. Soc., 30(1):46–54, 1998.
  39. D. McDuff. Groupoids, branched manifolds and multisections. J. Symplectic Geom., 4(3):259–315, 2006.
  40. S. Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.
  41. Valuations, trees, and degenerations of hyperbolic structures. I. Ann. of Math. (2), 120(3):401–476, 1984.
  42. M. Mihalik and E. Swenson. Relatively hyperbolic groups with semistable fundamental group at infinity. J. Topol., 14(1):39–61, 2021.
  43. D.V. Osin. Elementary subgroups of relatively hyperbolic groups and bounded generation. Internat. J. Algebra Comput., 16(1):99–118, 2006.
  44. D.V. Osin. Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems. Mem. Amer. Math. Soc., 179(843):1–100, 2006.
  45. P. Papasoglu and E. Swenson. From continua to ℝℝ\mathbb{R}blackboard_R–trees. Algebr. Geom. Topol., 6:1759–1784, 2006.
  46. J.-P. Serre. Arbres, amalgames, SL2subscriptSL2{\rm SL}_{2}roman_SL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, volume 46 of Astérisque. Société Mathématique de France, Paris, 1977. Written in collaboration with Hyman Bass.
  47. L.H.R. de Souza. Equivariant blowups of bounded parabolic points. arXiv:2008.05822.
  48. G.A. Swarup. On the cut point conjecture. Electron. Res. Announc. Amer. Math. Soc., 2(2):98–100, 1996.
  49. E.L. Swenson. A cutpoint tree for a continuum. In M. Atkinson, N. Gilbert, J. Howie, S. Linton, and E. Robertson, editors, Computational and geometric aspects of modern algebra, volume 275 of London Math. Soc. Lecture Note Ser., pages 254–265. Cambridge Univ. Press, Cambridge, 2000.
  50. J. Świątkowski. Trees of metric compacta and trees of manifolds. Geom. Topol., 24(2):533–592, 2020.
  51. P. Tukia. Convergence groups and Gromov’s metric hyperbolic spaces. New Zealand J. Math., 23(2):157–187, 1994.
  52. P. Tukia. Erratum: “Convergence groups and Gromov’s metric hyperbolic spaces”. New Zealand J. Math., 25(1):105–106, 1996.
  53. S. Willard. General topology. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970.
Citations (9)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com