Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SNUG: Self-Supervised Neural Dynamic Garments (2204.02219v1)

Published 5 Apr 2022 in cs.CV, cs.GR, and cs.LG

Abstract: We present a self-supervised method to learn dynamic 3D deformations of garments worn by parametric human bodies. State-of-the-art data-driven approaches to model 3D garment deformations are trained using supervised strategies that require large datasets, usually obtained by expensive physics-based simulation methods or professional multi-camera capture setups. In contrast, we propose a new training scheme that removes the need for ground-truth samples, enabling self-supervised training of dynamic 3D garment deformations. Our key contribution is to realize that physics-based deformation models, traditionally solved in a frame-by-frame basis by implicit integrators, can be recasted as an optimization problem. We leverage such optimization-based scheme to formulate a set of physics-based loss terms that can be used to train neural networks without precomputing ground-truth data. This allows us to learn models for interactive garments, including dynamic deformations and fine wrinkles, with two orders of magnitude speed up in training time compared to state-of-the-art supervised methods

Citations (67)

Summary

We haven't generated a summary for this paper yet.