Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fault-Tolerant Deep Learning: A Hierarchical Perspective (2204.01942v1)

Published 5 Apr 2022 in cs.AR, cs.AI, and cs.LG

Abstract: With the rapid advancements of deep learning in the past decade, it can be foreseen that deep learning will be continuously deployed in more and more safety-critical applications such as autonomous driving and robotics. In this context, reliability turns out to be critical to the deployment of deep learning in these applications and gradually becomes a first-class citizen among the major design metrics like performance and energy efficiency. Nevertheless, the back-box deep learning models combined with the diverse underlying hardware faults make resilient deep learning extremely challenging. In this special session, we conduct a comprehensive survey of fault-tolerant deep learning design approaches with a hierarchical perspective and investigate these approaches from model layer, architecture layer, circuit layer, and cross layer respectively.

Citations (9)

Summary

We haven't generated a summary for this paper yet.