Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coverage hole detection in WSN with force-directed algorithm and transfer learning (2204.01592v1)

Published 31 Mar 2022 in cs.NI

Abstract: Coverage hole detection is an important research problem in wireless sensor network research community. However, distributed approaches proposed in recent years for coverage hole detection problem have high computational complexity. In this paper, we propose a novel approach for coverage hole detection in wireless sensor networks called FD-TL (Force-directed and Transfer-learning) which is based on layout generation capability of Force-directed Algorithms and image recognition power of Convolutional Neural Network with transfer learning. In contrast to existing approaches, the proposed approach is a pure topology-based approach since FD-TL can detect both triangular and non-triangular coverage holes from a wireless sensor network based on the input network topology without relying on the physical locations of the anchor nodes. In FD-TL, a Force-directed Algorithm is used to generate a series of possible layouts from a given input topology. Next, a Convolutional Neural Network is used to recognize potential coverage holes from the generated layouts. During the training phase, a transfer learning method is used to aid the recognition process. Experimental results show that FD-TL method can achieve 90% sensitivity and 96% specificity for coverage hole detection in wireless sensor networks.

Citations (9)

Summary

We haven't generated a summary for this paper yet.