Papers
Topics
Authors
Recent
2000 character limit reached

Exponential ergodicity for damping Hamiltonian dynamics with state-dependent and non-local collisions

Published 4 Apr 2022 in math.PR | (2204.01372v1)

Abstract: In this paper, we investigate the exponential ergodicity in a Wasserstein-type distance for a damping Hamiltonian dynamics with state-dependent and non-local collisions, which indeed is a special case of piecewise deterministic Markov processes while is very popular in numerous modelling situations including stochastic algorithms. The approach adopted in this work is based on a combination of the refined basic coupling and the refined reflection coupling for non-local operators. In a certain sense, the main result developed in the present paper is a continuation of the counterpart in \cite{BW2022} on exponential ergodicity of stochastic Hamiltonian systems with L\'evy noises and a complement of \cite{BA} upon exponential ergodicity for Andersen dynamics with constant jump rate functions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.