Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VRKG4Rec: Virtual Relational Knowledge Graphs for Recommendation (2204.01089v3)

Published 3 Apr 2022 in cs.IR and cs.AI

Abstract: Incorporating knowledge graph as side information has become a new trend in recommendation systems. Recent studies regard items as entities of a knowledge graph and leverage graph neural networks to assist item encoding, yet by considering each relation type individually. However, relation types are often too many and sometimes one relation type involves too few entities. We argue that it is not efficient nor effective to use every relation type for item encoding. In this paper, we propose a VRKG4Rec model (Virtual Relational Knowledge Graphs for Recommendation), which explicitly distinguish the influence of different relations for item representation learning. We first construct virtual relational graphs (VRKGs) by an unsupervised learning scheme. We also design a local weighted smoothing (LWS) mechanism for encoding nodes, which iteratively updates a node embedding only depending on the embedding of its own and its neighbors, but involve no additional training parameters. We also employ the LWS mechanism on a user-item bipartite graph for user representation learning, which utilizes encodings of items with relational knowledge to help training representations of users. Experiment results on two public datasets validate that our VRKG4Rec model outperforms the state-of-the-art methods. The implementations are available at https://github.com/lulu0913/VRKG4Rec.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Lingyun Lu (2 papers)
  2. Bang Wang (20 papers)
  3. Zizhuo Zhang (6 papers)
  4. Shenghao Liu (1 paper)
  5. Han Xu (92 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.