Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Brillouin Zones of Integer Lattices and Their Perturbations (2204.01077v2)

Published 3 Apr 2022 in math.CO, cs.CG, and math.MG

Abstract: For a locally finite set, $A \subseteq \mathbb{R}d$, the $k$-th Brillouin zone of $a \in A$ is the region of points $x \in \mathbb{R}d$ for which $|x-a|$ is the $k$-th smallest among the Euclidean distances between $x$ and the points in $A$. If $A$ is a lattice, the $k$-th Brillouin zones of the points in $A$ are translates of each other, which tile space. Depending on the value of $k$, they express medium- or long-range order in the set. We study fundamental geometric and combinatorial properties of Brillouin zones, focusing on the integer lattice and its perturbations. Our results include the stability of a Brillouin zone under perturbations, a linear upper bound on the number of chambers in a zone for lattices in $\mathbb{R}2$, and the convergence of the maximum volume of a chamber to zero for the integer lattice.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com