Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Differential Evolution-Enhanced Latent Factor Analysis Model for High-dimensional and Sparse Data (2204.00861v2)

Published 2 Apr 2022 in cs.LG

Abstract: High-dimensional and sparse (HiDS) matrices are frequently adopted to describe the complex relationships in various big data-related systems and applications. A Position-transitional Latent Factor Analysis (PLFA) model can accurately and efficiently represent an HiDS matrix. However, its involved latent factors are optimized by stochastic gradient descent with the specific gradient direction step-by-step, which may cause a suboptimal solution. To address this issue, this paper proposes a Sequential-Group-Differential- Evolution (SGDE) algorithm to refine the latent factors optimized by a PLFA model, thereby achieving a highly-accurate SGDE-PLFA model to HiDS matrices. As demonstrated by the experiments on four HiDS matrices, a SGDE-PLFA model outperforms the state-of-the-art models.

Summary

We haven't generated a summary for this paper yet.