Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chordal Sparsity for Lipschitz Constant Estimation of Deep Neural Networks (2204.00846v2)

Published 2 Apr 2022 in cs.LG

Abstract: Lipschitz constants of neural networks allow for guarantees of robustness in image classification, safety in controller design, and generalizability beyond the training data. As calculating Lipschitz constants is NP-hard, techniques for estimating Lipschitz constants must navigate the trade-off between scalability and accuracy. In this work, we significantly push the scalability frontier of a semidefinite programming technique known as LipSDP while achieving zero accuracy loss. We first show that LipSDP has chordal sparsity, which allows us to derive a chordally sparse formulation that we call Chordal-LipSDP. The key benefit is that the main computational bottleneck of LipSDP, a large semidefinite constraint, is now decomposed into an equivalent collection of smaller ones: allowing Chordal-LipSDP to outperform LipSDP particularly as the network depth grows. Moreover, our formulation uses a tunable sparsity parameter that enables one to gain tighter estimates without incurring a significant computational cost. We illustrate the scalability of our approach through extensive numerical experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.
  2. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
  3. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.
  4. J. Su, D. V. Vargas, and K. Sakurai, “One Pixel Attack for Fooling Deep Neural Networks,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp. 828–841, 2019.
  5. A. Virmaux and K. Scaman, “Lipschitz regularity of Deep Neural Networks: Analysis and Efficient Estimation,” in Proceedings of the Advances in Neural Information Processing Systems, vol. 31, Montreal, Canada, December 2018, p. 3839–3848.
  6. M. Jordan and A. G. Dimakis, “Exactly Computing the Local Lipschitz Constant of ReLU Networks,” in Proceedings of the Advances in Neural Information Processing Systems, vol. 33, December 2020, pp. 7344–7353.
  7. M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. Pappas, “Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks,” in Proceedings of the Advances in Neural Information Processing Systems, vol. 32, Vancouver, Canada, December 2019, pp. 11 427–11 438.
  8. B. Açıkmeşe and M. Corless, “Observers for systems with nonlinearities satisfying incremental quadratic constraints,” Automatica, vol. 47, no. 7, pp. 1339–1348, 2011.
  9. L. Vandenberghe and M. S. Andersen, “Chordal graphs and semidefinite optimization,” Foundations and Trends in Optimization, vol. 1, no. 4, pp. 241–433, 2015.
  10. Y. Zheng, “Chordal Sparsity in Control and Optimization of Large-scale Systems,” Ph.D. dissertation, University of Oxford, 2019.
  11. P. L. Bartlett, D. J. Foster, and M. J. Telgarsky, “Spectrally-normalized margin bounds for neural networks,” in Proceedings of the Conference on Neural Information Processing Systems, vol. 30, Long Beach, California, USA, December 2017.
  12. T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for generative adversarial networks,” arXiv preprint arXiv:1802.05957, 2018.
  13. M. Jin and J. Lavaei, “Stability-Certified Reinforcement Learning: A Control-Theoretic Perspective,” IEEE Access, vol. 8, pp. 229 086–229 100, 2020.
  14. L. Lindemann, A. Robey, L. Jiang, S. Tu, and N. Matni, “Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations,” arXiv preprint arXiv:2111.09971, 2021.
  15. H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree, “Regularisation of neural networks by enforcing lipschitz continuity,” Machine Learning, vol. 110, no. 2, pp. 393–416, 2021.
  16. G. Wood and B. Zhang, “Estimation of the Lipschitz constant of a function,” Journal of Global Optimization, vol. 8, no. 1, pp. 91–103, 1996.
  17. A. Chakrabarty, D. K. Jha, G. T. Buzzard, Y. Wang, and K. G. Vamvoudakis, “Safe Approximate Dynamic Programming via Kernelized Lipschitz Estimation,” IEEE Transactions On Neural Networks and Learning Systems, vol. 32, no. 1, pp. 405–419, 2020.
  18. F. Latorre, P. T. Y. Rolland, and V. Cevher, “Lipschitz constant estimation for Neural Networks via sparse polynomial optimization,” in Proceedings of the International Conference on Learning Representations, April 2020.
  19. P. L. Combettes and J.-C. Pesquet, “Lipschitz Certificates for Layered Network Structures Driven by Averaged Activation Operators,” SIAM Journal on Mathematics of Data Science, vol. 2, no. 2, pp. 529–557, 2020.
  20. T. Avant and K. A. Morgansen, “Analytical bounds on the local Lipschitz constants of ReLU networks,” arXiv preprint arXiv:2104.14672, 2021.
  21. C. Herrera, F. Krach, and J. Teichmann, “Estimating Full Lipschitz Constants of Deep Neural Networks,” arXiv preprint arXiv:2004.13135, 2020.
  22. R. P. Mason and A. Papachristodoulou, “Chordal Sparsity, Decomposing SDPs and the Lyapunov Equation,” in Proceedings of the American Control Conference, Portland, Oregon, USA, June 2014, pp. 531–537.
  23. L. P. Ihlenfeld and G. H. Oliveira, “A Faster Passivity Enforcement Method via Chordal Sparsity,” Electric Power Systems Research, vol. 204, p. 107706, 2022.
  24. H. Chen, H.-T. D. Liu, A. Jacobson, and D. I. Levin, “Chordal Decomposition for Spectral Coarsening,” ACM Transactions on Graphics, vol. 39, no. 6, pp. 1–16, 2020.
  25. M. Newton and A. Papachristodoulou, “Exploiting Sparsity for Neural Network Verification,” in Proceedings of Learning for Dynamics and Control, June 2021, pp. 715–727.
  26. P. Pauli, A. Koch, J. Berberich, P. Kohler, and F. Allgöwer, “Training robust neural networks using lipschitz bounds,” IEEE Control Systems Letters, vol. 6, pp. 121–126, 2021.
  27. A. Griewank and P. L. Toint, “On the existence of convex decompositions of partially separable functions,” Mathematical Programming, vol. 28, no. 1, pp. 25–49, 1984.
Citations (10)

Summary

We haven't generated a summary for this paper yet.