Papers
Topics
Authors
Recent
2000 character limit reached

Path Development Network with Finite-dimensional Lie Group Representation

Published 2 Apr 2022 in cs.LG and stat.ML | (2204.00740v2)

Abstract: Signature, lying at the heart of rough path theory, is a central tool for analysing controlled differential equations driven by irregular paths. Recently it has also found extensive applications in machine learning and data science as a mathematically principled, universal feature that boosts the performance of deep learning-based models in sequential data tasks. It, nevertheless, suffers from the curse of dimensionality when paths are high-dimensional. We propose a novel, trainable path development layer, which exploits representations of sequential data through finite-dimensional Lie groups, thus resulting in dimension reduction. Its backpropagation algorithm is designed via optimization on manifolds. Our proposed layer, analogous to recurrent neural networks (RNN), possesses an explicit, simple recurrent unit that alleviates the gradient issues. Our layer demonstrates its strength in irregular time series modelling. Empirical results on a range of datasets show that the development layer consistently and significantly outperforms signature features on accuracy and dimensionality. The compact hybrid model (stacking one-layer LSTM with the development layer) achieves state-of-the-art against various RNN and continuous time series models. Our layer also enhances the performance of modelling dynamics constrained to Lie groups. Code is available at https://github.com/PDevNet/DevNet.git.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.