Papers
Topics
Authors
Recent
Search
2000 character limit reached

Emergent $\mathbb{Z}_2$ gauge theories and topological excitations in Rydberg atom arrays

Published 1 Apr 2022 in cond-mat.quant-gas, cond-mat.str-el, hep-th, and quant-ph | (2204.00632v1)

Abstract: Strongly interacting arrays of Rydberg atoms provide versatile platforms for exploring exotic many-body phases and dynamics of correlated quantum systems. Motivated by recent experimental advances, we show that the combination of Rydberg interactions and appropriate lattice geometries naturally leads to emergent $\mathbb{Z}_2$ gauge theories endowed with matter fields. Based on this mapping, we describe how Rydberg platforms could realize two distinct classes of topological $\mathbb{Z}_2$ quantum spin liquids, which differ in their patterns of translational symmetry fractionalization. We also discuss the natures of the fractionalized excitations of these $\mathbb{Z}_2$ spin liquid states using both fermionic and bosonic parton theories, and illustrate their rich interplay with proximate solid phases.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.