Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-end Learnable Diversity-aware News Recommendation (2204.00539v1)

Published 1 Apr 2022 in cs.IR

Abstract: Diversity is an important factor in providing high-quality personalized news recommendations. However, most existing news recommendation methods only aim to optimize recommendation accuracy while ignoring diversity. Reranking is a widely used post-processing technique to promote the diversity of top recommendation results. However, the recommendation model is not perfect and errors may be propagated and amplified in a cascaded recommendation algorithm. In addition, the recommendation model itself is not diversity-aware, making it difficult to achieve a good tradeoff between recommendation accuracy and diversity. In this paper, we propose a news recommendation approach named LeaDivRec, which is a fully learnable model that can generate diversity-aware news recommendations in an end-to-end manner. Different from existing news recommendation methods that are usually based on point- or pair-wise ranking, in LeaDivRec we propose a more effective list-wise news recommendation model. More specifically, we propose a permutation Transformer to consider the relatedness between candidate news and meanwhile can learn different representations for similar candidate news to help improve recommendation diversity. We also propose an effective list-wise training method to learn accurate ranking models. In addition, we propose a diversity-aware regularization method to further encourage the model to make controllable diversity-aware recommendations. Extensive experiments on two real-world datasets validate the effectiveness of our approach in balancing recommendation accuracy and diversity.

Citations (8)

Summary

We haven't generated a summary for this paper yet.