Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Separate and conquer heuristic allows robust mining of contrast sets in classification, regression, and survival data (2204.00497v3)

Published 1 Apr 2022 in cs.DB, cs.AI, and cs.LG

Abstract: Identifying differences between groups is one of the most important knowledge discovery problems. The procedure, also known as contrast sets mining, is applied in a wide range of areas like medicine, industry, or economics. In the paper we present RuleKit-CS, an algorithm for contrast set mining based on separate and conquer - a well established heuristic for decision rule induction. Multiple passes accompanied with an attribute penalization scheme provide contrast sets describing same examples with different attributes, distinguishing presented approach from the standard separate and conquer. The algorithm was also generalized for regression and survival data allowing identification of contrast sets whose label attribute/survival prognosis is consistent with the label/prognosis for the predefined contrast groups. This feature, not provided by the existing approaches, further extends the usability of RuleKit-CS. Experiments on over 130 data sets from various areas and detailed analysis of selected cases confirmed RuleKit-CS to be a useful tool for discovering differences between defined groups. The algorithm was implemented as a part of the RuleKit suite available at GitHub under GNU AGPL 3 licence (https://github.com/adaa-polsl/RuleKit). Keywords: contrast sets, separate and conquer, regression, survival

Citations (1)

Summary

We haven't generated a summary for this paper yet.