Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hochschild homology, and a persistent approach via connectivity digraphs (2204.00462v1)

Published 1 Apr 2022 in math.AT and math.CO

Abstract: We introduce a persistent Hochschild homology framework for directed graphs. Hochschild homology groups of (path algebras of) directed graphs vanish in degree $i\geq 2$. To extend them to higher degrees, we introduce the notion of connectivity digraphs and analyse two main examples; the first, arising from Atkin's $q$-connectivity, and the second, here called $n$-path digraphs, generalising the classical notion of line graphs. Based on a categorical setting for persistent homology, we propose a stable pipeline for computing persistent Hochschild homology groups. This pipeline is also amenable to other homology theories; for this reason, we complement our work with a survey on homology theories of digraphs.

Summary

We haven't generated a summary for this paper yet.