Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A revised sequential quadratic semidefinite programming method for nonlinear semidefinite optimization (2204.00369v1)

Published 1 Apr 2022 in math.OC

Abstract: In 2020, Yamakawa and Okuno proposed a stabilized sequential quadratic semidefinite programming (SQSDP) method for solving, in particular, degenerate nonlinear semidefinite optimization problems. The algorithm is shown to converge globally without a constraint qualification, and it has some nice properties, including the feasible subproblems, and their possible inexact computations. In particular, the convergence was established for approximate-Karush-Kuhn-Tucker (AKKT) and trace-AKKT conditions, which are two sequential optimality conditions for the nonlinear conic contexts. However, recently, complementarity-AKKT (CAKKT) conditions were also consider, as an alternative to the previous mentioned ones, that is more practical. Since few methods are shown to converge to CAKKT points, at least in conic optimization, and to complete the study associated to the SQSDP, here we propose a revised version of the method, maintaining the good properties. We modify the previous algorithm, prove the global convergence in the sense of CAKKT, and show some preliminary numerical experiments.

Summary

We haven't generated a summary for this paper yet.