Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Filter-based Discriminative Autoencoders for Children Speech Recognition (2204.00164v2)

Published 1 Apr 2022 in cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: Children speech recognition is indispensable but challenging due to the diversity of children's speech. In this paper, we propose a filter-based discriminative autoencoder for acoustic modeling. To filter out the influence of various speaker types and pitches, auxiliary information of the speaker and pitch features is input into the encoder together with the acoustic features to generate phonetic embeddings. In the training phase, the decoder uses the auxiliary information and the phonetic embedding extracted by the encoder to reconstruct the input acoustic features. The autoencoder is trained by simultaneously minimizing the ASR loss and feature reconstruction error. The framework can make the phonetic embedding purer, resulting in more accurate senone (triphone-state) scores. Evaluated on the test set of the CMU Kids corpus, our system achieves a 7.8% relative WER reduction compared to the baseline system. In the domain adaptation experiment, our system also outperforms the baseline system on the British-accent PF-STAR task.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.