Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributionally Robust Decision Making Leveraging Conditional Distributions (2204.00138v1)

Published 31 Mar 2022 in math.OC, cs.SY, and eess.SY

Abstract: Distributionally robust optimization (DRO) is a powerful tool for decision making under uncertainty. It is particularly appealing because of its ability to leverage existing data. However, many practical problems call for decision-making with some auxiliary information, and DRO in the context of conditional distribution is not straightforward. We propose a conditional kernel distributionally robust optimization (CKDRO) method that enables robust decision making under conditional distributions through kernel DRO and the conditional mean operator in the reproducing kernel Hilbert space (RKHS). In particular, we consider problems where there is a correlation between the unknown variable y and an auxiliary observable variable x. Given past data of the two variables and a queried auxiliary variable, CKDRO represents the conditional distribution P(y|x) as the conditional mean operator in the RKHS space and quantifies the ambiguity set in the RKHS as well, which depends on the size of the dataset as well as the query point. To justify the use of RKHS, we demonstrate that the ambiguity set defined in RKHS can be viewed as a ball under a metric that is similar to the Wasserstein metric. The DRO is then dualized and solved via a finite dimensional convex program. The proposed CKDRO approach is applied to a generation scheduling problem and shows that the result of CKDRO is superior to common benchmarks in terms of quality and robustness.

Citations (2)

Summary

We haven't generated a summary for this paper yet.