Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Growth of Rényi Entropies in Interacting Integrable Models and the Breakdown of the Quasiparticle Picture (2203.17264v3)

Published 31 Mar 2022 in cond-mat.stat-mech, hep-th, and quant-ph

Abstract: R\'enyi entropies are conceptually valuable and experimentally relevant generalisations of the celebrated von Neumann entanglement entropy. After a quantum quench in a clean quantum many-body system they generically display a universal linear growth in time followed by saturation. While a finite subsystem is essentially at local equilibrium when the entanglement saturates, it is genuinely out-of-equilibrium in the growth phase. In particular, the slope of the growth carries vital information on the nature of the system's dynamics, and its characterisation is a key objective of current research. Here we show that the slope of R\'enyi entropies can be determined by means of a spacetime duality transformation. In essence, we argue that the slope coincides with the stationary density of entropy of the model obtained by exchanging the roles of space and time. Therefore, very surprisingly, the slope of the entanglement is expressed as an equilibrium quantity. We use this observation to find an explicit exact formula for the slope of R\'enyi entropies in all integrable models treatable by thermodynamic Bethe ansatz and evolving from integrable initial states. Interestingly, this formula can be understood in terms of a quasiparticle picture only in the von Neumann limit.

Summary

We haven't generated a summary for this paper yet.