Perceptual Contrast Stretching on Target Feature for Speech Enhancement
Abstract: Speech enhancement (SE) performance has improved considerably owing to the use of deep learning models as a base function. Herein, we propose a perceptual contrast stretching (PCS) approach to further improve SE performance. The PCS is derived based on the critical band importance function and is applied to modify the targets of the SE model. Specifically, the contrast of target features is stretched based on perceptual importance, thereby improving the overall SE performance. Compared with post-processing-based implementations, incorporating PCS into the training phase preserves performance and reduces online computation. Notably, PCS can be combined with different SE model architectures and training criteria. Furthermore, PCS does not affect the causality or convergence of SE model training. Experimental results on the VoiceBank-DEMAND dataset show that the proposed method can achieve state-of-the-art performance on both causal (PESQ score = 3.07) and noncausal (PESQ score = 3.35) SE tasks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.