Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deformation and Correspondence Aware Unsupervised Synthetic-to-Real Scene Flow Estimation for Point Clouds (2203.16895v1)

Published 31 Mar 2022 in cs.CV

Abstract: Point cloud scene flow estimation is of practical importance for dynamic scene navigation in autonomous driving. Since scene flow labels are hard to obtain, current methods train their models on synthetic data and transfer them to real scenes. However, large disparities between existing synthetic datasets and real scenes lead to poor model transfer. We make two major contributions to address that. First, we develop a point cloud collector and scene flow annotator for GTA-V engine to automatically obtain diverse realistic training samples without human intervention. With that, we develop a large-scale synthetic scene flow dataset GTA-SF. Second, we propose a mean-teacher-based domain adaptation framework that leverages self-generated pseudo-labels of the target domain. It also explicitly incorporates shape deformation regularization and surface correspondence refinement to address distortions and misalignments in domain transfer. Through extensive experiments, we show that our GTA-SF dataset leads to a consistent boost in model generalization to three real datasets (i.e., Waymo, Lyft and KITTI) as compared to the most widely used FT3D dataset. Moreover, our framework achieves superior adaptation performance on six source-target dataset pairs, remarkably closing the average domain gap by 60%. Data and codes are available at https://github.com/leolyj/DCA-SRSFE

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Zhao Jin (23 papers)
  2. Yinjie Lei (30 papers)
  3. Naveed Akhtar (77 papers)
  4. Haifeng Li (102 papers)
  5. Munawar Hayat (73 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.