Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Memory-Efficient Training of RNN-Transducer with Sampled Softmax (2203.16868v1)

Published 31 Mar 2022 in eess.AS and cs.CL

Abstract: RNN-Transducer has been one of promising architectures for end-to-end automatic speech recognition. Although RNN-Transducer has many advantages including its strong accuracy and streaming-friendly property, its high memory consumption during training has been a critical problem for development. In this work, we propose to apply sampled softmax to RNN-Transducer, which requires only a small subset of vocabulary during training thus saves its memory consumption. We further extend sampled softmax to optimize memory consumption for a minibatch, and employ distributions of auxiliary CTC losses for sampling vocabulary to improve model accuracy. We present experimental results on LibriSpeech, AISHELL-1, and CSJ-APS, where sampled softmax greatly reduces memory consumption and still maintains the accuracy of the baseline model.

Citations (8)

Summary

We haven't generated a summary for this paper yet.