Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$S^1$-bounded Fourier multipliers on $H^1({\mathbb R})$ and functional calculus for semigroups (2203.16829v1)

Published 31 Mar 2022 in math.FA

Abstract: Let $T\colon H1({\mathbb R})\to H1({\mathbb R})$ be a bounded Fourier multiplier on the analytic Hardy space $H1({\mathbb R})\subset L1({\mathbb R})$ and let $m\in L\infty({\mathbb R}+)$ be its symbol, that is, $\widehat{T(h)}=m\widehat{h}$ for all $h\in H1({\mathbb R})$.Let $S1$ be the Banach space of all trace class operators on $\ell2$. We show that $T$ admits a bounded tensor extension $T\overline{\otimes} I{S_1}\colon H1({\mathbb R};S1) \to H1({\mathbb R};S1)$ if and only if there exist a Hilbert space $\mathcal H$ and two functions $\alpha, \beta \in L\infty({\mathbb R}+;{\mathcal H})$ such that $m(s+t) = \langle\alpha(t),\beta(s)\rangle{\mathcal H}$ for almost every $(s,t)\in{\mathbb R}+2$. Such Fourier multipliers arecalled $S1$-bounded and we let ${\mathcal M}{S1}(H1({\mathbb R}))$ denote the Banach space of all $S1$-bounded Fourier multipliers. Next we apply this result to functional calculus estimates, in two steps. First we introduce a new Banach algebra ${\mathcal A}{0,S1}({\mathbb C}+)$ of bounded analytic functions on ${\mathbb C}+ =\bigl{z\in{\mathbb C}\, :\, {\rm Re}(z)>0\bigr}$ and show that its dual space coincides with ${\mathcal M}{S1}(H1({\mathbb R}))$. Second, given any bounded $C_0$-semigroup $(T_t){t\geq 0}$ on Hilbert space, and any $b\in L1({\mathbb R}+)$, we establish an estimate $\bigl\Vert\int_0\infty b(t) T_t\, dt\bigr\Vert\lesssim \Vert L_b\Vert_{{\mathcal A}_{0,S1}({\mathbb R})}$, where $L_b$ denotes the Laplace transform of $b$. This improves previous functional calculus estimates recently obtained by the first two authors.

Summary

We haven't generated a summary for this paper yet.