Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Meta-Reinforcement Learning with Curriculum-Based Task Sampling (2203.16801v1)

Published 31 Mar 2022 in cs.LG

Abstract: Meta-reinforcement learning (meta-RL) acquires meta-policies that show good performance for tasks in a wide task distribution. However, conventional meta-RL, which learns meta-policies by randomly sampling tasks, has been reported to show meta-overfitting for certain tasks, especially for easy tasks where an agent can easily get high scores. To reduce effects of the meta-overfitting, we considered meta-RL with curriculum-based task sampling. Our method is Robust Meta Reinforcement Learning with Guided Task Sampling (RMRL-GTS), which is an effective method that restricts task sampling based on scores and epochs. We show that in order to achieve robust meta-RL, it is necessary not only to intensively sample tasks with poor scores, but also to restrict and expand the task regions of the tasks to be sampled.

Citations (1)

Summary

We haven't generated a summary for this paper yet.