Papers
Topics
Authors
Recent
2000 character limit reached

Extreme value theory for a sequence of suprema of a class of Gaussian processes with trend

Published 30 Mar 2022 in math.PR, math.ST, and stat.TH | (2203.16631v2)

Abstract: We investigate extreme value theory of a class of random sequences defined by the all-time suprema of aggregated self-similar Gaussian processes with trend. This study is motivated by its potential applications in various areas and its theoretical interestingness. We consider both stationary sequences and non-stationary sequences obtained by considering whether the trend functions are identical or not. We show that a sequence of suitably normalised $k$th order statistics converges in distribution to a limiting random variable which can be a negative log transformed Erlang distributed random variable, a Normal random variable or a mixture of them, according to three conditions deduced through the model parameters. Remarkably, this phenomenon resembles that for the stationary Normal sequence. We also show that various moments of the normalised $k$th order statistics converge to the moments of the corresponding limiting random variable. The obtained results enable us to analyze various properties of these random sequences, which reveals the interesting particularities of this class of random sequences in extreme value theory.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.