Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extreme value theory for a sequence of suprema of a class of Gaussian processes with trend (2203.16631v2)

Published 30 Mar 2022 in math.PR, math.ST, and stat.TH

Abstract: We investigate extreme value theory of a class of random sequences defined by the all-time suprema of aggregated self-similar Gaussian processes with trend. This study is motivated by its potential applications in various areas and its theoretical interestingness. We consider both stationary sequences and non-stationary sequences obtained by considering whether the trend functions are identical or not. We show that a sequence of suitably normalised $k$th order statistics converges in distribution to a limiting random variable which can be a negative log transformed Erlang distributed random variable, a Normal random variable or a mixture of them, according to three conditions deduced through the model parameters. Remarkably, this phenomenon resembles that for the stationary Normal sequence. We also show that various moments of the normalised $k$th order statistics converge to the moments of the corresponding limiting random variable. The obtained results enable us to analyze various properties of these random sequences, which reveals the interesting particularities of this class of random sequences in extreme value theory.

Summary

We haven't generated a summary for this paper yet.