Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neighbor Enhanced Graph Convolutional Networks for Node Classification and Recommendation (2203.16097v1)

Published 30 Mar 2022 in cs.LG

Abstract: The recently proposed Graph Convolutional Networks (GCNs) have achieved significantly superior performance on various graph-related tasks, such as node classification and recommendation. However, currently researches on GCN models usually recursively aggregate the information from all the neighbors or randomly sampled neighbor subsets, without explicitly identifying whether the aggregated neighbors provide useful information during the graph convolution. In this paper, we theoretically analyze the affection of the neighbor quality over GCN models' performance and propose the Neighbor Enhanced Graph Convolutional Network (NEGCN) framework to boost the performance of existing GCN models. Our contribution is three-fold. First, we at the first time propose the concept of neighbor quality for both node classification and recommendation tasks in a general theoretical framework. Specifically, for node classification, we propose three propositions to theoretically analyze how the neighbor quality affects the node classification performance of GCN models. Second, based on the three proposed propositions, we introduce the graph refinement process including specially designed neighbor evaluation methods to increase the neighbor quality so as to boost both the node classification and recommendation tasks. Third, we conduct extensive node classification and recommendation experiments on several benchmark datasets. The experimental results verify that our proposed NEGCN framework can significantly enhance the performance for various typical GCN models on both node classification and recommendation tasks.

Citations (43)

Summary

We haven't generated a summary for this paper yet.