Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coarse to Fine: Image Restoration Boosted by Multi-Scale Low-Rank Tensor Completion (2203.15189v1)

Published 29 Mar 2022 in cs.CV

Abstract: Existing low-rank tensor completion (LRTC) approaches aim at restoring a partially observed tensor by imposing a global low-rank constraint on the underlying completed tensor. However, such a global rank assumption suffers the trade-off between restoring the originally details-lacking parts and neglecting the potentially complex objects, making the completion performance unsatisfactory on both sides. To address this problem, we propose a novel and practical strategy for image restoration that restores the partially observed tensor in a coarse-to-fine (C2F) manner, which gets rid of such trade-off by searching proper local ranks for both low- and high-rank parts. Extensive experiments are conducted to demonstrate the superiority of the proposed C2F scheme. The codes are available at: https://github.com/RuiLin0212/C2FLRTC.

Citations (1)

Summary

We haven't generated a summary for this paper yet.