Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LocalBins: Improving Depth Estimation by Learning Local Distributions (2203.15132v1)

Published 28 Mar 2022 in cs.CV

Abstract: We propose a novel architecture for depth estimation from a single image. The architecture itself is based on the popular encoder-decoder architecture that is frequently used as a starting point for all dense regression tasks. We build on AdaBins which estimates a global distribution of depth values for the input image and evolve the architecture in two ways. First, instead of predicting global depth distributions, we predict depth distributions of local neighborhoods at every pixel. Second, instead of predicting depth distributions only towards the end of the decoder, we involve all layers of the decoder. We call this new architecture LocalBins. Our results demonstrate a clear improvement over the state-of-the-art in all metrics on the NYU-Depth V2 dataset. Code and pretrained models will be made publicly available.

Citations (76)

Summary

We haven't generated a summary for this paper yet.