Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient-Matching Coresets for Rehearsal-Based Continual Learning (2203.14544v1)

Published 28 Mar 2022 in cs.LG

Abstract: The goal of continual learning (CL) is to efficiently update a machine learning model with new data without forgetting previously-learned knowledge. Most widely-used CL methods rely on a rehearsal memory of data points to be reused while training on new data. Curating such a rehearsal memory to maintain a small, informative subset of all the data seen so far is crucial to the success of these methods. We devise a coreset selection method for rehearsal-based continual learning. Our method is based on the idea of gradient matching: The gradients induced by the coreset should match, as closely as possible, those induced by the original training dataset. Inspired by the neural tangent kernel theory, we perform this gradient matching across the model's initialization distribution, allowing us to extract a coreset without having to train the model first. We evaluate the method on a wide range of continual learning scenarios and demonstrate that it improves the performance of rehearsal-based CL methods compared to competing memory management strategies such as reservoir sampling.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lukas Balles (17 papers)
  2. Giovanni Zappella (28 papers)
  3. Cédric Archambeau (18 papers)
Citations (3)