Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Clinically Relevant Biometric Constraints To Supervise A Deep Learning Model For The Accurate Caliper Placement To Obtain Sonographic Measurements Of The Fetal Brain (2203.14482v2)

Published 28 Mar 2022 in eess.IV and cs.CV

Abstract: Multiple studies have demonstrated that obtaining standardized fetal brain biometry from mid-trimester ultrasonography (USG) examination is key for the reliable assessment of fetal neurodevelopment and the screening of central nervous system (CNS) anomalies. Obtaining these measurements is highly subjective, expertise-driven, and requires years of training experience, limiting quality prenatal care for all pregnant mothers. In this study, we propose a deep learning (DL) approach to compute 3 key fetal brain biometry from the 2D USG images of the transcerebellar plane (TC) through the accurate and automated caliper placement (2 per biometry) by modeling it as a landmark detection problem. We leveraged clinically relevant biometric constraints (relationship between caliper points) and domain-relevant data augmentation to improve the accuracy of a U-Net DL model (trained/tested on: 596 images, 473 subjects/143 images, 143 subjects). We performed multiple experiments demonstrating the effect of the DL backbone, data augmentation, generalizability and benchmarked against a recent state-of-the-art approach through extensive clinical validation (DL vs. 7 experienced clinicians). For all cases, the mean errors in the placement of the individual caliper points and the computed biometry were comparable to error rates among clinicians. The clinical translation of the proposed framework can assist novice users from low-resource settings in the reliable and standardized assessment of fetal brain sonograms.

Citations (1)

Summary

We haven't generated a summary for this paper yet.