Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continual learning: a feature extraction formalization, an efficient algorithm, and fundamental obstructions (2203.14383v1)

Published 27 Mar 2022 in cs.LG and stat.ML

Abstract: Continual learning is an emerging paradigm in machine learning, wherein a model is exposed in an online fashion to data from multiple different distributions (i.e. environments), and is expected to adapt to the distribution change. Precisely, the goal is to perform well in the new environment, while simultaneously retaining the performance on the previous environments (i.e. avoid "catastrophic forgetting") -- without increasing the size of the model. While this setup has enjoyed a lot of attention in the applied community, there hasn't be theoretical work that even formalizes the desired guarantees. In this paper, we propose a framework for continual learning through the framework of feature extraction -- namely, one in which features, as well as a classifier, are being trained with each environment. When the features are linear, we design an efficient gradient-based algorithm $\mathsf{DPGD}$, that is guaranteed to perform well on the current environment, as well as avoid catastrophic forgetting. In the general case, when the features are non-linear, we show such an algorithm cannot exist, whether efficient or not.

Citations (9)

Summary

We haven't generated a summary for this paper yet.