Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature Selective Transformer for Semantic Image Segmentation (2203.14124v3)

Published 26 Mar 2022 in cs.CV

Abstract: Recently, it has attracted more and more attentions to fuse multi-scale features for semantic image segmentation. Various works were proposed to employ progressive local or global fusion, but the feature fusions are not rich enough for modeling multi-scale context features. In this work, we focus on fusing multi-scale features from Transformer-based backbones for semantic segmentation, and propose a Feature Selective Transformer (FeSeFormer), which aggregates features from all scales (or levels) for each query feature. Specifically, we first propose a Scale-level Feature Selection (SFS) module, which can choose an informative subset from the whole multi-scale feature set for each scale, where those features that are important for the current scale (or level) are selected and the redundant are discarded. Furthermore, we propose a Full-scale Feature Fusion (FFF) module, which can adaptively fuse features of all scales for queries. Based on the proposed SFS and FFF modules, we develop a Feature Selective Transformer (FeSeFormer), and evaluate our FeSeFormer on four challenging semantic segmentation benchmarks, including PASCAL Context, ADE20K, COCO-Stuff 10K, and Cityscapes, outperforming the state-of-the-art.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Fangjian Lin (7 papers)
  2. Tianyi Wu (41 papers)
  3. Sitong Wu (20 papers)
  4. Shengwei Tian (12 papers)
  5. Guodong Guo (75 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.