Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constant factor approximations for Lower and Upper bounded Clusterings (2203.14058v1)

Published 26 Mar 2022 in cs.DS

Abstract: Clustering is one of the most fundamental problem in Machine Learning. Researchers in the field often require a lower bound on the size of the clusters to maintain anonymity and upper bound for the ease of analysis. Specifying an optimal cluster size is a problem often faced by scientists. In this paper, we present a framework to obtain constant factor approximations for some prominent clustering objectives, with lower and upper bounds on cluster size. This enables scientists to give an approximate cluster size by specifying the lower and the upper bounds for it. Our results preserve the lower bounds but may violate the upper bound a little. %{GroverGD21_LBUBFL_Cocoon} to $2$. %namely, $k$ Center (LUkC) and $k$ Median (LUkM) problem. We study the problems when either of the bounds is uniform. We apply our framework to give the first constant factor approximations for LUkM and its generalization, $k$-facility location problem (LUkFL), with $\beta+1$ factor violation in upper bounds where $\beta$ is the violation of upper bounds in solutions of upper bounded $k$-median and $k$-facility location problems respectively. We also present a result on LUkC with uniform upper bounds and, its generalization, lower and (uniform) upper bounded $k$ supplier problem (LUkS). The approach also gives a result on lower and upper bounded facility location problem (LUFL), improving upon the upper bound violation of $5/2$ due to Gupta et al. We also reduce the violation in upper bounds for a special case when the gap between the lower and upper bounds is not too small.

Summary

We haven't generated a summary for this paper yet.