Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

There are infinitely many monotone games over $L_5$ (2203.13971v1)

Published 26 Mar 2022 in math.CO

Abstract: A notion of combinatorial game over a partially ordered set of atomic outcomes was recently introduced by Selinger. These games are appropriate for describing the value of positions in Hex and other monotone set coloring games. It is already known that there are infinitely many distinct monotone game values when the poset of atoms is not linearly ordered, and that there are only finitely many such values when the poset of atoms is linearly ordered with 4 or fewer elements. In this short paper, we settle the remaining case: when the atom poset has 5 or more elements, there are infinitely many distinct monotone values.

Summary

We haven't generated a summary for this paper yet.