Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Kullback-Leibler divergence between pairwise isotropic Gaussian-Markov random fields (2203.13164v1)

Published 24 Mar 2022 in cs.IT, math.IT, nlin.AO, physics.data-an, and stat.ML

Abstract: The Kullback-Leibler divergence or relative entropy is an information-theoretic measure between statistical models that play an important role in measuring a distance between random variables. In the study of complex systems, random fields are mathematical structures that models the interaction between these variables by means of an inverse temperature parameter, responsible for controlling the spatial dependence structure along the field. In this paper, we derive closed-form expressions for the Kullback-Leibler divergence between two pairwise isotropic Gaussian-Markov random fields in both univariate and multivariate cases. The proposed equation allows the development of novel similarity measures in image processing and machine learning applications, such as image denoising and unsupervised metric learning.

Citations (2)

Summary

We haven't generated a summary for this paper yet.