Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intelligent Systematic Investment Agent: an ensemble of deep learning and evolutionary strategies (2203.13125v1)

Published 24 Mar 2022 in cs.AI, cs.CY, and cs.NE

Abstract: Machine learning driven trading strategies have garnered a lot of interest over the past few years. There is, however, limited consensus on the ideal approach for the development of such trading strategies. Further, most literature has focused on trading strategies for short-term trading, with little or no focus on strategies that attempt to build long-term wealth. Our paper proposes a new approach for developing long-term investment strategies using an ensemble of evolutionary algorithms and a deep learning model by taking a series of short-term purchase decisions. Our methodology focuses on building long-term wealth by improving systematic investment planning (SIP) decisions on Exchange Traded Funds (ETF) over a period of time. We provide empirical evidence of superior performance (around 1% higher returns) using our ensemble approach as compared to the traditional daily systematic investment practice on a given ETF. Our results are based on live trading decisions made by our algorithm and executed on the Robinhood trading platform.

Summary

We haven't generated a summary for this paper yet.