Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information Preferences of Individual Agents in Linear-Quadratic-Gaussian Network Games (2203.13056v1)

Published 24 Mar 2022 in cs.GT, cs.MA, cs.SY, econ.GN, eess.SY, math.OC, and q-fin.EC

Abstract: We consider linear-quadratic-Gaussian (LQG) network games in which agents have quadratic payoffs that depend on their individual and neighbors' actions, and an unknown payoff-relevant state. An information designer determines the fidelity of information revealed to the agents about the payoff state to maximize the social welfare. Prior results show that full information disclosure is optimal under certain assumptions on the payoffs, i.e., it is beneficial for the average individual. In this paper, we provide conditions based on the strength of the dependence of payoffs on neighbors' actions, i.e., competition, under which a rational agent is expected to benefit, i.e., receive higher payoffs, from full information disclosure. We find that all agents benefit from information disclosure for the star network structure when the game is symmetric and submodular or supermodular. We also identify that the central agent benefits more than a peripheral agent from full information disclosure unless the competition is strong and the number of peripheral agents is small enough. Despite the fact that all agents expect to benefit from information disclosure ex-ante, a central agent can be worse-off from information disclosure in many realizations of the payoff state under strong competition, indicating that a risk-averse central agent can prefer uninformative signals ex-ante.

Citations (2)

Summary

We haven't generated a summary for this paper yet.