Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Reinforcement Approach for Detecting P2P Botnet Communities in Dynamic Communication Graphs (2203.12793v1)

Published 24 Mar 2022 in cs.NI and cs.CR

Abstract: Peer-to-peer (P2P) botnets use decentralized command and control networks that make them resilient to disruptions. The P2P botnet overlay networks manifest structures in mutual-contact graphs, also called communication graphs, formed using network traffic information. It has been shown that these structures can be detected using community detection techniques from graph theory. These previous works, however, treat the communication graphs and the P2P botnet structures as static. In reality, communication graphs are dynamic as they represent the continuously changing network traffic flows. Similarly, the P2P botnets also evolve with time, as new bots join and existing bots leave either temporarily or permanently. In this paper we address the problem of detecting such evolving P2P botnet communities in dynamic communication graphs. We propose a reinforcement-based approach, suitable for large communication graphs, that improves precision and recall of P2P botnet community detection in dynamic communication graphs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.