Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

OJXPerf: Featherlight Object Replica Detection for Java Programs (2203.12712v1)

Published 23 Mar 2022 in cs.PL

Abstract: Memory bloat is an important source of inefficiency in complex production software, especially in software written in managed languages such as Java. Prior approaches to this problem have focused on identifying objects that outlive their life span. Few studies have, however, looked into whether and to what extent myriad objects of the same type are identical. A quantitative assessment of identical objects with code-level attribution can assist developers in refactoring code to eliminate object bloat, and favor reuse of existing object(s). The result is reduced memory pressure, reduced allocation and garbage collection, enhanced data locality, and reduced re-computation, all of which result in superior performance. We develop OJXPerf, a lightweight sampling-based profiler, which probabilistically identifies identical objects. OJXPerf employs hardware performance monitoring units (PMU) in conjunction with hardware debug registers to sample and compare field values of different objects of the same type allocated at the same calling context but potentially accessed at different program points. The result is a lightweight measurement, a combination of object allocation contexts and usage contexts ordered by duplication frequency. This class of duplicated objects is relatively easier to optimize. OJXPerf incurs 9% runtime and 6% memory overheads on average. We empirically show the benefit of OJXPerf by using its profiles to instruct us to optimize a number of Java programs, including well-known benchmarks and real-world applications. The results show a noticeable reduction in memory usage (up to 11%) and a significant speedup (up to 25%).

Citations (9)

Summary

We haven't generated a summary for this paper yet.