Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Robust and Accurate Adaptive Approximation Method for a Diffuse-Interface Model of Binary-Fluid Flows (2203.12584v1)

Published 23 Mar 2022 in math.NA and cs.NA

Abstract: We present an adaptive simulation framework for binary-fluid flows, based on the Abels-Garcke-Gr\"un Navier-Stokes-Cahn-Hilliard (AGG NSCH) diffuse-interface model. The adaptive-refinement procedure is guided by a two-level hierarchical a-posteriori error estimate, and it effectively resolves the spatial multiscale behavior of the diffuse-interface model. To improve the robustness of the solution procedure and avoid severe time-step restrictions for small-interface thicknesses, we introduce an $\varepsilon$-continuation procedure, in which the diffuse interface thickness ($\varepsilon$) are enlarged on coarse meshes, and the mobility is scaled accordingly. To further accelerate the computations and improve robustness, we apply a modified Backward Euler scheme in the initial stages of the adaptive-refinement procedure in each time step, and a Crank--Nicolson scheme in the final stages of the refinement procedure. To enhance the robustness of the nonlinear solution procedure, we introduce a partitioned solution procedure for the linear tangent problems in Newton's method, based on a decomposition of the NSCH system into its NS and CH subsystems. We conduct a systematic investigation of the conditioning of the monolithic NSCH tangent matrix and of its NS and CH subsystems for a representative 2D model problem. To illustrate the properties of the presented adaptive simulation framework, we present numerical results for a 2D oscillating water droplet suspended in air, and we validate the obtained results versus those of a corresponding sharp-interface model.

Citations (5)

Summary

We haven't generated a summary for this paper yet.