Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Negative Selection by Clustering for Contrastive Learning in Human Activity Recognition (2203.12230v1)

Published 23 Mar 2022 in cs.CV, cs.AI, and cs.HC

Abstract: Contrastive learning has been applied to Human Activity Recognition (HAR) based on sensor data owing to its ability to achieve performance comparable to supervised learning with a large amount of unlabeled data and a small amount of labeled data. The pre-training task for contrastive learning is generally instance discrimination, which specifies that each instance belongs to a single class, but this will consider the same class of samples as negative examples. Such a pre-training task is not conducive to human activity recognition tasks, which are mainly classification tasks. To address this problem, we follow SimCLR to propose a new contrastive learning framework that negative selection by clustering in HAR, which is called ClusterCLHAR. Compared with SimCLR, it redefines the negative pairs in the contrastive loss function by using unsupervised clustering methods to generate soft labels that mask other samples of the same cluster to avoid regarding them as negative samples. We evaluate ClusterCLHAR on three benchmark datasets, USC-HAD, MotionSense, and UCI-HAR, using mean F1-score as the evaluation metric. The experiment results show that it outperforms all the state-of-the-art methods applied to HAR in self-supervised learning and semi-supervised learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jinqiang Wang (10 papers)
  2. Tao Zhu (205 papers)
  3. Liming Chen (102 papers)
  4. Huansheng Ning (53 papers)
  5. Yaping Wan (7 papers)
Citations (26)

Summary

We haven't generated a summary for this paper yet.