Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Post-Hopf algebras, relative Rota-Baxter operators and solutions of the Yang-Baxter equation (2203.12174v1)

Published 23 Mar 2022 in math-ph and math.MP

Abstract: In this paper, first we introduce the notion of a post-Hopf algebra, which gives rise to a post-Lie algebra on the space of primitive elements and there is naturally a post-Hopf algebra structure on the universal enveloping algebra of a post-Lie algebra. A novel property is that a cocommutative post-Hopf algebra gives rise to a generalized Grossman-Larsson product, which leads to a subadjacent Hopf algebra and can be used to construct solutions of the Yang-Baxter equation. Then we introduce the notion of relative Rota-Baxter operators on Hopf algebras. A cocommutative post-Hopf algebra gives rise to a relative Rota-Baxter operator on its subadjacent Hopf algebra. Conversely, a relative Rota-Baxter operator also induces a post-Hopf algebra. Then we show that relative Rota-Baxter operators give rise to matched pairs of Hopf algebras. Consequently, post-Hopf algebras and relative Rota-Baxter operators give solutions of the Yang-Baxter equation in certain cocommutative Hopf algebras. Finally we characterize relative Rota-Baxter operators on Hopf algebras using relative Rota-Baxter operators on the Lie algebra of primitive elements, graphs and module bialgebra structures.

Summary

We haven't generated a summary for this paper yet.