Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast on-line signature recognition based on VQ with time modeling (2203.12104v1)

Published 23 Mar 2022 in cs.CV, cs.CR, and cs.LG

Abstract: This paper proposes a multi-section vector quantization approach for on-line signature recognition. We have used the MCYT database, which consists of 330 users and 25 skilled forgeries per person performed by 5 different impostors. This database is larger than those typically used in the literature. Nevertheless, we also provide results from the SVC database. Our proposed system outperforms the winner of SVC with a reduced computational requirement, which is around 47 times lower than DTW. In addition, our system improves the database storage requirements due to vector compression, and is more privacy-friendly as it is not possible to recover the original signature using the codebooks. Experimental results with MCYT provide a 99.76% identification rate and 2.46% EER (skilled forgeries and individual threshold). Experimental results with SVC are 100% of identification rate and 0% (individual threshold) and 0.31% (general threshold) when using a two-section VQ approach.

Citations (39)

Summary

We haven't generated a summary for this paper yet.