Papers
Topics
Authors
Recent
2000 character limit reached

Analysis and Petrov-Galerkin numerical approximation for variable coefficient two-sided fractional diffusion, advection, reaction equations

Published 22 Mar 2022 in math.NA and cs.NA | (2203.11705v1)

Abstract: In this paper we investigate the variable coefficient two-sided fractional diffusion, advection, reaction equations on a bounded interval. It is known that the fractional diffusion operator may lose coercivity due to the variable coefficient, which makes both the mathematical and numerical analysis challenging. To resolve this issue, we design appropriate test and trial functions to prove the inf-sup condition of the variable coefficient fractional diffusion, advection, reaction operators in suitable function spaces. Based on this property, we prove the well-posedness and regularity of the solutions, as well as analyze the Petrov-Galerkin approximation scheme for the proposed model. Numerical experiments are presented to substantiate the theoretical findings and to compare the behaviors of different models.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.