Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TS-Reconfiguration of $k$-Path Vertex Covers in Caterpillars for $k \geq 4$ (2203.11667v3)

Published 22 Mar 2022 in cs.DS, cs.DM, and math.CO

Abstract: A $k$-path vertex cover ($k$-PVC) of a graph $G$ is a vertex subset $I$ such that each path on $k$ vertices in $G$ contains at least one member of $I$. Imagine that a token is placed on each vertex of a $k$-PVC. Given two $k$-PVCs $I, J$ of a graph $G$, the $k$-Path Vertex Cover Reconfiguration ($k$-PVCR) under Token Sliding ($\mathsf{TS}$) problem asks if there is a sequence of $k$-PVCs between $I$ and $J$ where each intermediate member is obtained from its predecessor by sliding a token from some vertex to one of its unoccupied neighbors. This problem is known to be $\mathtt{PSPACE}$-complete even for planar graphs of maximum degree $3$ and bounded treewidth and can be solved in polynomial time for paths and cycles. Its complexity for trees remains unknown. In this paper, as a first step toward answering this question, for $k \geq 4$, we present a polynomial-time algorithm that solves $k$-PVCR under $\mathsf{TS}$ for caterpillars (i.e., trees formed by attaching leaves to a path).

Summary

We haven't generated a summary for this paper yet.