2000 character limit reached
$L^p(\mathbb{R}^d)$ boundedness for the Calderón commutator with rough kernel (2203.11541v2)
Published 22 Mar 2022 in math.CA
Abstract: Let $k\in\mathbb{N}$, $\Omega$ be homogeneous of degree zero, integrable on $S{d-1}$ and have vanishing moment of order $k$, $a$ be a function on $\mathbb{R}d$ such that $\nabla a\in L{\infty}(\mathbb{R}d)$, and $T_{\Omega,\,a;k}$ be the $d$-dimensional Calder\'on commutator defined by $$T_{\Omega,\,a;k}f(x)={\rm p.\,v.}\int_{\mathbb{R}d}\frac{\Omega(x-y)}{|x-y|{d+k}}\big(a(x)-a(y)\big)kf(y){d}y.$$ In this paper, the authors prove that if $$\sup_{\zeta\in S{d-1}}\int_{S{d-1}}|\Omega(\theta)|\log {\beta} \big(\frac{1}{|\theta\cdot\zeta|}\big)d\theta<\infty,$$ with $\beta\in(1,\,\infty]$, then for $\frac{2\beta}{2\beta-1}<p<2\beta$, $T_{\Omega,\,a;\,k}$ is bounded on $Lp(\mathbb{R}d)$.