Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Adversarial Network for Future Hand Segmentation from Egocentric Video (2203.11305v2)

Published 21 Mar 2022 in cs.CV

Abstract: We introduce the novel problem of anticipating a time series of future hand masks from egocentric video. A key challenge is to model the stochasticity of future head motions, which globally impact the head-worn camera video analysis. To this end, we propose a novel deep generative model -- EgoGAN, which uses a 3D Fully Convolutional Network to learn a spatio-temporal video representation for pixel-wise visual anticipation, generates future head motion using Generative Adversarial Network (GAN), and then predicts the future hand masks based on the video representation and the generated future head motion. We evaluate our method on both the EPIC-Kitchens and the EGTEA Gaze+ datasets. We conduct detailed ablation studies to validate the design choices of our approach. Furthermore, we compare our method with previous state-of-the-art methods on future image segmentation and show that our method can more accurately predict future hand masks.

Citations (12)

Summary

We haven't generated a summary for this paper yet.