Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On $ μ$-Zariski pairs of links (2203.10684v1)

Published 21 Mar 2022 in math.AG and math.CV

Abstract: The notion of Zariski pairs for projective curves in $\mathbb P2$ is known since the pioneer paper of Zariski \cite{Zariski} and for further development, we refer the reference in \cite{Bartolo}.In this paper, we introduce a notion of Zariski pair of links in the class of isolated hypersurface singularities. Such a pair is canonically produced from a Zariski (or a weak Zariski ) pair of curves $C={f(x,y,z)=0}$ and $C'={g(x,y,z)=0}$ of degree $d$ by simply adding a monomial $z{d+m}$ to $f$ and $g$ so that the corresponding affine hypersurfaces have isolated singularities at the origin. They have a same zeta function and a same Milnor number (\cite{Almost}). We give new examples of Zariski pairs which have the same $\mu*$ sequence and a same zeta function but two functions belong to different connected components of $\mu$-constant strata (Theorem \ref{mu-zariski}). Two link 3-folds are not diffeomorphic and they are distinguished by the first homology which implies the Jordan form of their monodromies are different (Theorem \ref{main2}). We start from weak Zariski pairs of projective curves to construct new Zariski pairs of surfaces which have non-diffeomorphic link 3-folds. We also prove that hypersurface pair constructed from a Zariski pair give a diffeomorphic links (Theorem \ref{main3}).

Summary

We haven't generated a summary for this paper yet.