Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

METL: a modern ETL pipeline with a dynamic mapping matrix (2203.10289v6)

Published 19 Mar 2022 in cs.DC

Abstract: Modern ETL streaming pipelines extract data from various sources and forward it to multiple consumers, such as data warehouses (DW) and analytical systems that leverage ML. However, the increasing number of systems that are connected to such pipelines requires new solutions for data integration. The canonical (or common) data model (CDM) offers such an integration. It is particular useful for integrating microservice systems into ETL pipelines. (Villaca et al 2020, Oliveira et al 2019) However, a mapping to a CDM is complex. (Lemcke et al 2012) There are three complexity problems, namely the size of the required mapping matrix, the automation of updates of the matrix in response to changes in the extraction sources and the time efficiency of the mapping. In this paper, we present a new solution for these problems. More precisely, we present a new dynamic mapping matrix (DMM), which is based on permutation matrices that are obtained by block-partitioning the full mapping matrix. We show that the DMM can be used for automated updates in response to schema changes, for parallel computation in near real-time and for highly efficient compacting. For the solution, we draw on research into matrix partitioning (Quinn 2004) and dynamic networks (Haase et al 2021). The DMM has been implemented into an app called Message ETL (METL). METL is the key part of a new ETL streaming pipeline at EOS that conducts the transformation to a CDM. The ETL pipeline is based on Kafka-streams. It extracts data from more than 80 microservices with log-based Change Data Capture (CDC) with Debezium and loads the data to a DW and an ML platform. EOS is part of the Otto-Group, the second-largest e-commerce provider in Europe.

Summary

We haven't generated a summary for this paper yet.