Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stabilization for small mass in a quasilinear parabolic--elliptic--elliptic attraction-repulsion chemotaxis system with density-dependent sensitivity: repulsion-dominant case (2203.10240v1)

Published 19 Mar 2022 in math.AP

Abstract: This paper deals with the quasilinear attraction-repulsion chemotaxis system \begin{align*} \begin{cases} u_t=\nabla\cdot \big((u+1){m-1}\nabla u -\chi u(u+1){p-2}\nabla v +\xi u(u+1){q-2}\nabla w\big),\[] 0=\Delta v+\alpha u-\beta v,\[] 0=\Delta w+\gamma u-\delta w \end{cases} \end{align*} in a bounded domain $\Omega \subset \mathbb{R}n$ $(n \in \mathbb{N})$ with smooth boundary $\partial \Omega$, where $m, p, q \in \mathbb{R}$, $\chi, \xi, \alpha, \beta, \gamma, \delta>0$ are constants. In the case that $m=1$ and $p=q=2$, when $\chi\alpha-\xi\gamma<0$ and $\beta=\delta$, Tao-Wang (Math. Models Methods Appl. Sci.; 2013; 23; 1-36) proved that global bounded classical solutions toward the spatially constant equilibrium $(\overline{u_0}, \frac{\alpha}{\beta}\overline{u_0}, \frac{\gamma}{\delta}\overline{u_0})$ via the reduction to the Keller-Segel system by using the transformation $z:=\chi v-\xi w$, where $\overline{u_0}$ is the spatial average of the initial data $u_0$. However, since the above system involves nonlinearities, the method is no longer valid. The purpose of this paper is to establish that global bounded classical solutions converge to the spatially constant equilibrium $(\overline{u_0}, \frac{\alpha}{\beta}\overline{u_0}, \frac{\gamma}{\delta}\overline{u_0})$.

Summary

We haven't generated a summary for this paper yet.