Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active learning in open experimental environments: selecting the right information channel(s) based on predictability in deep kernel learning (2203.10181v1)

Published 18 Mar 2022 in cs.LG, cond-mat.mtrl-sci, and physics.data-an

Abstract: Active learning methods are rapidly becoming the integral component of automated experiment workflows in imaging, materials synthesis, and computation. The distinctive aspect of many experimental scenarios is the presence of multiple information channels, including both the intrinsic modalities of the measurement system and the exogenous environment and noise signals. One of the key tasks in experimental studies is hence establishing which of these channels is predictive of the behaviors of interest. Here we explore the problem of discovery of the optimal predictive channel for structure-property relationships (in microscopy) using deep kernel learning for modality selection in an active experiment setting. We further pose that this approach can be directly applicable to similar active learning tasks in automated synthesis and the discovery of quantitative structure-activity relations in molecular systems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.